A Critical Assessment of Synthetic Lubricant Technologies for Alternative Refrigerants

Dr. S.J. Randles
Dr. S.J. McTavish
Dr. T.W. Dekleva

www.uniqema.com/lubricants/lit/ashrae03
Introduction

- *iso*-Butane R-600a (C_4H_{10})
- Carbon Dioxide R-744 (CO_2)
- Ammonia R-717 (NH_3)
iso-Butane R-600a (C₄H₁₀)
Mineral Oil Issues

• ISO 10 to 22 mineral oils commonly used for R-600a. However, some issues have been observed related to the excessive solubility of R-600a in mineral oil
 – Foaming
 – Oil slugging (solubility: MO > esters > PAGs)
 – Reduction in energy efficiency

• Diester lubricant technology offers several advantages
 – Excellent lubricity
 – Reduced oil solubility
 • Reduced foaming
 • Improved energy efficiency of up to 5 %
 – Biodegradability
Chemistry of Diesters and POEs

Diester

Alcohol — Acid — Alcohol

- Diesters are less expensive than POEs

Polyol esters (POE)

Acid

Acid — Alcohol — Acid

Acid

- POEs are more soluble than Diesters
R-600a Lubricant Circulation Test

![Graph showing the mass of oil collected over time for Diester and Mineral Oil.](image-url)
Carbon Dioxide R-744 (CO$_2$)
CO₂ Lubricant Issues

- **Oil Transport**
 - Oil Solubility

- **High Pressure / High Load**
 - Wear Performance

- **Higher Level of water in Gas and Oil**
 - Formation of carbonic acid from the reaction of carbon dioxide and water

\[
\text{CO}_2 + \text{H}_2\text{O} \leftrightarrow \text{O=C} \text{OH} \text{OH}
\]

- Effectiveness of drier
Schematic of CO$_2$ Miscibility Behaviour

<table>
<thead>
<tr>
<th>Lubricant</th>
<th>Miscibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral Oil</td>
<td>Immiscible</td>
</tr>
<tr>
<td>PAO & AB</td>
<td>Immiscible</td>
</tr>
<tr>
<td>Diester & POE</td>
<td>Miscible</td>
</tr>
<tr>
<td>PAG</td>
<td>Partial</td>
</tr>
</tbody>
</table>

Polyol ester

- Two Phases
- One Phase

PAG

- Two Phases
- One Phase

Oil Concentration (wt%) vs Temperature °C
CO₂ / Lubricant Phase Inversion

Temperature in °C

Density in g/cm³

-30 -20 -10 0 10 20 30 40

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

PAG
POE
MO
AB

CO₂

Hagita et al, Kobe, December 2000
Overview of CO$_2$ Solubility

- POEs
 - Other Ester
 - PVEs
 - PAGs
 - ABs
 - PAOs
 - Mineral Oil

- Lower Solubility

- Higher Solubility
Vapour Liquid Equilibria Data: CO$_2$ with ISO 32 POE, Diester & PAG
Vapour Liquid Equilibria Data: CO₂ with ISO 100 POE
Overview of CO\textsubscript{2} Lubricants

- Mineral oil (MO)
 - Very poor miscibility and solubility
 - Oil return and heat transfer issues
 - Phase inversion
 - Oil separation issues

- Poly \(\alpha\)-olefin (PAO) & alkyl benzene (AB)
 - Experience with process gas applications
 - Poor miscibility and solubility
 - Phase inversion
Overview of CO\textsubscript{2} Lubricants

• Diester
 – Esters have a very high solubility
 • may need to use higher viscosity grades.
 – Hydrolytic stability
 – Have been used for a number of years in CO\textsubscript{2} process gas applications

• Polyol ester (POE)
 – As for diesters but greater stability and cost
Overview of CO$_2$ Lubricants

- Single end capped PAG
 - Have been used for a number of years in CO$_2$ process gas applications
 - High levels of water in the oil
 - Dielectric strength
 - Material issues (e.g. PET)
 - Stability ?
- Double end capped PAG
 - Work well in automotive applications and overcome many of the above problems
 - Greater stability and reduced moisture sensitivity when compared to single-end capped
Chemistry of Polyalkylene glycols (PAG)

Polyalkylene glycol (PAG) - non end-capped

Polyalkylene glycol (PAG) - double end-capped

- Polar components attract water

- Endcap

- Polar components attract water

\[= \text{Polar component} \]

\[= \text{Non-polar component} \]
CO₂ Lubricant Additive Issues

- **Wear**
 - High load may need addition of anti-wear additive

- **Copper Plating**
 - Are copper deactivators required?

- **Foaming**
 - Very high solubility of esters, in certain systems, may require use of anti-foaming agents
Overview of Oil Use

- Ester, PAGs, PAOs and blends of these with other oil are all under evaluation.
 - Double end-capped PAGs are approved and used for:
 - Automotive sector
 - Heat pumps
 - Polyol esters and diesters are used for:
 - Heat pumps
 - Industrial & Commercial compressors
 - Vending machines
Ammonia R-717 (NH₃)
Overview of Ammonia Lubricants

- Poor solubility of hydrocarbons in ammonia
 - Mineral oil, PAO, AB
- Esters react with ammonia to form gels
 - Therefore should not be used
- PAGs have good solubility with ammonia. Double end capped EO/PO PAGs used
 - Low water uptake
 - Inverse solubility
 - Improved compatibility with mineral oil
 - Excellent stability
Overview of Ammonia Lubricants

• Flooded evaporators - Hydrocarbons
 – Blends of PAO, AB and hydrocracked oils
 – Poor miscibility with ammonia
 • Low foaming
 • Low dilution

• DX systems - Double end capped PAGs
 – Reduced refrigerant concentration (1:50)
 – Excellent heat transfer
 – Cost effective system
Conclusions

• Chemistry can be modified to optimise
 – Solubility
 • Wear, foaming, oil transport, heat transfer etc.
 – Stability
 • Drain interval
 – Materials compatibility
• Oil selection criteria is often based on logistical issues
 – One oil for several refrigerants e.g. CO$_2$ and CNG
• Synthetics offer a number of advantages for use with alternative refrigerants
Disclaimer

- Although the information and recommendations in this publication are believed to be accurate and are given in good faith, Uniqema makes no representation or warranty as to the completeness or accuracy of any information given. Suggestions made concerning uses or applications are only the opinion of Uniqema and users should undertake their own tests and analysis to determine the suitability of these products for their own particular purpose. However because of numerous factors affecting results, Uniqema MAKES NO REPRESENTATION OR WARRANTY, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT TO INFORMATION OR THE PRODUCT TO WHICH THE INFORMATION REFERS. Nothing contained herein is to be construed as a recommendation to use any product, process, equipment or formulation in conflict with any patent or other intellectual property right and Uniqema makes no representation or warranty, express or implied, that the use thereof will not infringe any patent or other intellectual property right, including without limitation copyright, trademark and designs, of any third party. Any trademarks herein identified including without limitation Emkarate, Emkarox, Uniqema and the ICI Roundel are trademarks of the ICI Group of Companies. The ICI Group of Companies shall mean Imperial Chemical Industries PLC, and all companies or other legal entities owned directly or indirectly by Imperial Chemical Industries PLC. Uniqema is the trading name of Unichema Chemie BV, which is registered in the Netherlands no: HR29009483, Registered Office Buurtje 1, 2802 BE, Gouda The Netherlands.